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A theoretical study is made of the motion of a small sphere in an incompressible viscous 
fluid bounded by two plane walls. The analysis is based on the Stokes equations of 
motion and the method of reflexions is employed to  obtain the lowest-order wall 
effect on the sphere, which is allowed either to rotate or not as it translates in an 
arbitrary direction. The effect of two plane walls on the force and torque (or angular 
velocity) experienced by the sphere is not accurately estimated by superposing the 
contributions from the two individual walls. 

1. Introduction 
The presence of a boundary wall has great influence on the sedimentation of a 

particle or on the transport of suspensions, which motivates the study of wall effects. 
Although there have been many investigations of wall effects mostly on the basis of 
the Stokes equations of motion, the wall geometries so far considered have been 
limited to relatively simple ones such as a single plane wall (Lorentz 1907), two 
parallel plane walls (Faxen 1921, 1922; Ho & Leal 1974) and a cylindrical wall 
(Ladenburg 1907; Brenner & Happel 1958). The induced force and torque exerted on 
the sphere in these cases are expressed as series expansions in a small parameter 
6 = a / d ,  where a is the sphere radius and d is the distance of the sphere from the wall. 
The sphere undergoes additional drag of order B ,  but within the framework of the 
Stokes approximation it does not experience a side force when it translates parallel to 
or perpendicular to these walls. A detailed survey of wall effects is found in chapter 7 
of Happel & Brenner (1973). 

In  practical applications, however, it often happens that the geometry of the wall 
is not so simple as that mentioned above. For example, consider a sedimenting sphere 
in a fluid bounded by two plane walls intersecting at  a right angle, one of the walls being 
parallel to and the  other perpendicular to the direction of motion. If we calculate the  
wall effect by superposing the contribution from the two individual walls, we come to 
the conclusion that the sphere does not undergo a side force, which is not correct even 
in the regime of the Stokes approximation. Analysis that takesinto account the presence 
of both plane walls simultaneously is thus needed to give accurate results, and a t  
the same time to make clear to what extent the conventional estimation is relevant. 

Recently the effect of two plane walls was analysed by the present authors for the 
following two cases: (i) the force acting on a sphere when it translates in a viscous 
fluid bounded by two perpendicular plane walls (Sano & Hasimoto 1976), and (ii) the 
force and torque experienced by a sphere which moves on and across the bisector of 
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FIGURE 1. Definition sketch for a sphere and two plane walls. 

the wedge containing a viscous fluid, with special attention to the asymptotic behaviour 
as the wedge angle reduces to zero (Sano & Hasimoto 1977). We nsed the method of 
reflexions to obtain the lowest-order wall effect on the assumption that e was suffi- 
ciently small. In  the analysis, we have used the general solution of the Stokes equations 
of motion (Imai 1973) and reduced the whole problem to a mixed boundary-value 
problem determining at most four harmonic functions. Using similar techniques, 
Hasimoto (1976) determined the first-order wall effect on a sphere moving in any 
direction inside a cylinder, as did Kim (1976) for a sphere translating along the axis 
of a right circular cone. 

This paper is a generalization of the two-plane-wall-effect problem, and deals with 
the slow motion of a sphere in a viscous fluid contained in a wedge-shaped boundary. 
General expressions for the force and torque (when the sphere is kept from rotating) 
up to order e and e2, respectively, are given in $93 and 4. The sphere generally 
experiences a side force of order e as well as a drag force, but there exist three principal 
axes of translation (i.e. the axes along which the sphere undergoes no lateral force) at  
any position of the fluid domain. The sphere also undergoes a torque of order e2, and 
there exists one axis, which we shall term the torque-free direction, such that if the 
sphere translates along this direction it does not suffer a torque. The principal axes of 
translation and the torque-free direction are considered in Q 5. In  3 6, we shall give 
alternative expressions in terms of e* (=  a/p), where p is the distance between the 
sphere and the vertex of the wedge. When the sphere is allowed t o  rotate freely, the 
analysis developed in the foregoing sections remains unchanged for the calculation of 
the induced force, and in addition it leads directly to the determination of the angular 
velocity of the sphere as far as the lowest-order approximation is concerned. We shall 
show this in Q 7, and the quantities that are possibly connected with observations are 
also discussed there. 
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2. Formulation of the problem and the method of solution 
We consider the slow translational motion of a small sphere of radius a in an other- 

wise quiescent incompressible fluid of viscosity p which is confined between two plane 
walls. We take Cartesian co-ordinates (xl, x2, x3) so that the x3 axis coincides with the 
edge, and so that the x1 axis lies on the bisector of the wedge (see figure 1). We also 
introduce cylindrical co-ordinates ( r ,  8, z) ,  where the z axis and the 0 = 0 plane corre- 
spond to the x3 axis and the x2 = 0 plane, respectively. In the following, we use two 
co-ordinate systens, and components are distinguished when necessary by the 
suffixes 1,2,  3 or r,  8, z according as they are referred to the Cartesian co-ordinates or 
cylindrical co-ordinates. We denote the centre of the sphere by P(r = p, 8 = B, z = O ) ,  
its velocity by V = (K,&,K), and the two plane walls W by 6 = *a, where a is less 
than &r. The Reynolds number of the fluid motion is assumed to be sufficiently small 
for the inertia forces to be neglected. Consequently the governing equations and 
boundary conditions for the velocity v = (vl, v2, v3) and pressure p in the fluid are 

pv=v = vp, v .  v = 0, (2.11, (2.2) 

v = 0 a t  infinity and on the walls, (2.3a, b )  

v = V on the surface of the sphere. ( 2 . 3 ~ )  

We first assume that the sphere is not allowed to rotate, but this restriction will be 
removed later. 

As a general solution of (2.1) and (2.2), we adopt the expressions (Imai 1973, p. 313) 

(2.4) 

where x is the position vector of the particle, and $rL (n = 1, ..., 4) are harmonic 
functions. 

In  order to fulfil the conditions (2.3), we use the method of reflexions and find a 
solution of the form 

4) m 

n = l  n = l  
v = c v(n), p = pw, (2 .5)  

where each term (v (~ ) ,P (~ ) )  separately satisfies (2.1) and (2.2). In this iteration scheme, 
one findsfirst the flow fields (v(l),p(l)) due to the particle as ifthe walls were absent, then 
adds the second reflexion (v(2),p(2)) which cancels the velocity on the walls induced by 
the initial fields, and then follow the third reflexion, the fourth reflexion, etc., satisfying 
the boundary conditions on the particle and on the walls alternately. Thus the solution 
amounts to a series expansion in ascending powers of E ,  where 6 is the ratio of the 
sphere racihs to its characteristic separation distance from the boundary wall. In our 
present analysis, however, we shall confine ourselves to obtaining the first-order 
approximation to the force and torque experienced by the sphere, on the assumption 
that E is sufficiently small. Then we are allowed to employ the point force approxi- 
mation indetermining the second reflexion. This approximation is based on the fact that 
at  a large distance from any translating particle the velocity field must be asymptoti- 
cally equal to that generated by a point force or a Stokeslet situated at  the centre 
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of the particle, whose strength and direction are determined from the particle velocity, 
shape and dimension. Once the reflected fields (v(~) ,P(~))  are given, we can evaluate the 
force and torque acting on the sphere, correct to first order in the wall effect, by means 
of the generalized FaxBn's law (Brenner 1962, 1964): 

F = - 6 m , ~ a ( V - v ( ~ ) + . . . ) ~ ,  T = S n , . ~ a ~ ( $ V x v ( ~ ) + . . . ) ~ ,  (2.6) 

where the subscript P implies that the field is evaluated at  the centre of the particle. 
Since the equations and boundary conditions are linear, we deal separately with the 
motion of a sphere in the two cases of translation parallel to the z axis (0 3), and 
translation in the plane perpendicular to the z axis (0 4). 

3. Translation of a sphere parallel to both walls 
We first consider the translational motion of a sphere with velocity V ,  in the z 

direction. The first-order velocity field v(1) is the flow due to the motion of a sphere in 
an unbounded domain. At a large distance from the sphere we approximate this field 
by that of a Stokeslet which is represented by 

where 
4'" = $'" = $(;I = 0, 4'" = x, (3.1) 

x = - cJR,  c, = (t) aE,  R2 = p2 + r2 - 2pr cos (0 -/3) + z2.  

Then the reflected field v(~) ,  described by harmonic functions $2) (n = 1, . . . ,4) regular 
in the flow field, must satisfy the following boundary conditions on the walls: 

a a z a  l a  z a  x ae ae r a e  r ae rae  ' 

a (: ) a 
az (l ) a Z  

c o ~ e - $ , + s i n B - $ ~ + $ ~ s i n ~ - $ ~ c o s 6 + -  - $3+--  $4 = 

r--(#,cosB+$,sinO)+ z--1 $3+-$4 = - z--I x, 
at 8 = +a, (3.2) 

where and hereafter in this section we omit the superscript (2) in the harmonic 
functions $(:). These requirements are fulfilled by choosing 

$,cosO+$,sin8 = 0, g3 = -x, $, = 0, 

a a z a  z a  
ae ae rae  , - - i a e  cos~-#l+sin8-#2+#lsin~-$2cosO+--$ - -x a t  8 = +a. (3.3) 

We now use the Fourier transform with respect to z :  

F(r, 8, k )  = dzexp (ikz)f(r, 8, z )  = %[f], (3.4) S_m_ 
and the Kontrovich-Lebedev transform (Erdblyi et al. 1954) with respect to r :  

(3.5) 
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where KiV( 1 kl r )  is the modified Bessel function of imaginary order i,. Then the harmonic 
functions and boundary conditions mentioned above are transformed as follows : 

(3.6) ( d y e 2 -  v2) 6n = o (n = I ,  . . . ,4); 

@,(e) cos 8 +6,,(0) sin 8 = 0, 6,(0) = - ~ ( 8 1 ,  6 4 ( ~ )  = 0, 

@;(O) cos e +@p) sin 8 + 61(~) sin 8 - 62(8)  cos 8 + ~[f l [z#; / r ] l  = - Y[S[z~‘ / r ] l  

a t  6 = +a, (3.7) 
where the primes denote derivatives with respect to 8. 

Solutions of (3.6) which satisfy the boundary conditions (3.7) are 

6, = A,sinhBv+B,cosh8v (n = 1, ..., 4 ) ;  

sin a sinh av, B, = - 
= A+(v; a) A-(v; a) 

CS 
sin a cosh a v ,  

C A  
where 

- CS - CA 
A-(v; a) A+(v; a) 

A ,  = ___ cos a Gosh a v ,  B2 = - cos a sinh av, 

2nc2 sinhpv sinh [(n-a) v] 
KiA Ikl P), 

B, = - KiAIkl PI ,  

= - v sinh nv sinh av 

ZZC, Gosh p~ Gosh [ ( 7 ~  - a) V] 
v sinh nu cosh av 

A ,  = B, = 0, 

with 

pa  = cos a sinh a v  cos sinh pv + sin a cosh av sin $ cosh pv, 
qA = sin a cosh av cos p sinh ,8u - cos a sinh a v  sin $ cosh pv, 
p s  = cos a cosh a v  cos p cosh pv + sina sinh av sin p sinh pv, 
qs = sin a sinh a v  cos /3 cosh pv - cos a cosh av sin p sinh pv, 

and A*(v; a) = sinh2av vsin 2a, Dk(v; a )  = cosh 2av f. cos2a. (3.9) 

By applying the inverse transform 

f ( r ,  8, z )  = 1 1- dk exp ( - i kz )  J2v v sinh nvKiV( [ kl r )  P(v ,  8, k) (3.10) 
7C3 -a 

to (3 .8)  we obtain the $n and the complete velocity field is determined through (2.4). 
The force F and the torque T up to the first-order wall effect are now evaluated by 

means of (2. ti). They are 

F/6npuVe= -[1 +ef,,(a,P)]e,+O(e2), (3.11) 

c = a /d ,  (3.12) T/8npa2E = - e2[tr2(a, p) e, + t,(a, p) eel + O(e4), d = p sin [a -PI, 
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where e,, e, and e, are the unit vectors in the r ,  8 and z directions. Here the functions 
f,, t, and to, are 

where 

f, = 2 sin la -PI JoQdu { 1 + tanh nu - M, + 2(u2 + )) ( ( q A ) 2  
A+(u; a) D-(u; a) 

(qs)2 )I), M, = (cosh 2au - cosh 2pv)lsinh 2au, (3.13) 
+A-(u; a) D+(u; a) 

(3.14) 

rA = sin a cosh au sin B sinh Bv + cos a sinh au cos p cosh BY, 
rS = sin a sinh au sin p cosh pu + cos a cosh au cos $ sinh Pu, 

and other functions are defined in (3.9). Numerical values of fi,, t ,  and t ,  as functions of 
a and ,8 are shown in figures 2-4. These results are the generalization of our previous 
calculations (Sano & Hasirnoto 1976, 1977) which correspond to the case a =an or 
/3 = 0. They also include all other works dealing with the motion of a sphere along a 
single plane wall (Lorentz 1907) or two parallel plane walls (Fax& 1921, 1922; Ho & 
Leal 1974).f 

When a sphere moves parallel to both walls, it  does not undergo a lateral force at 
any position in the region, in agreement with general considerations. The torque on the 
sphere, however, vanes its direction as well as its magnitude with the location of the 
sphere. The deflexion angle 6, which is defined 5 y  the relation 

tan 6 = tgZ/t,.,, (3.16) 

is shown in figure 5 ;  and an example of these directions for a = +n is given in figure 6. 
These figures show clearly how the sphere’s direction varies from the 8 direction on the 
bisector to the r direction near the wall. As the wall is approached the O(e2) coefficient 
of the torque reduces to zero, and the torque becomes of order e4 as obtained by FaxBn 
(1921) for the case of a single plane wall: 

~ p n p q  = +4(1- QB), (3.17) 

which acts in the same direction as if it would make the sphere roll along the wall. 

In particular, when the sphere is situated midway between two plane wall s ( P  = 0) ,  the 
asymptotic forms off and t as a goes to zero are 

f,, = 1~004121+a2[~1n a+0~005108]+..., t g ,  = -0*224330a-aS[~in a+0.050810]+ ..., 
and those as a approaches to +n are 

f=. = &+0.3515(4n-a)+ ..., t g ,  = - 0 . 0 7 0 3 ( 4 ~ - a ) + . . . .  
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FIGURE 2. Graph off,, given by (3.13), which is the same aa the additional principal drag A,  in 
(5 .5 ) ,  for different values of a. The values 1.004 and 0.6526 in parentheses are those obtained by 
F a x h  (1922, 1921) ; the curves for a = frn and a = 0 correspond to those deduced from Lorentz 
(1907) and Ho & Leal (1974), respectively. 
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Bla 
FIGURE 3. Graph of - t,z given by (3.14). The value 0.025 in parentheses is deduced from Faxen 

(1921) as well as Wakiya (1956); the curve for a = 0 corresponds to Ho & Leal (1974). 
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FIGURE 4. Graph of - to,  given by (3.15) for different values of a. 
Maximum value is obtained a t  a = 34" on the bisector. 

4. Translation of a sphere perpendicular to the intersection of the walls 
In  this section we consider the translation of a sphere with velocity U = (c, V,,O). 

We denote the magnitude of the velocity by 77, and the angle between V ,  and V, by y, 
i.e. 

t any  = V,/V,. (4.1) 

The procedures for calculation are almost the same as those shown in the previous 
section. The asymptotic behaviour of the first-order velocity field v(l) in this case is 
described by 

4';) = xcos(/3+y),  4'2') = xsin(p+y),  &) = 0, &' = - p ~ c o s y ,  (4.2) 

where x = -c /R,  c = $aU, R2 = p2+r2-2prcos(8-,8) +z2.  We then introduce the 
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FIGURE 5. Graph of 6 defined by (3.16) for different values of a. 

68 1 

FIGURE 6. The direction of torque for a = in, where the sphere moves perpendicularly out of 
the paper. The magnitude of the torque O ( @ )  becomes zero in the vicinity of the wall, and the 
torque 0(e4) takes its place. 
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reflected field v@), which is expressed by harmonic functions 4:). The boundary con- 
ditions for $2) are 

a a 
ar ar 

= -cos(8 -p -  y) 

(r; - 1) (4, cos e + 42sin e) +z- 43 + - +4 

a 

a a z a  i a  
cos 8- 4, +sin 8- $2 + dl sine - 42 cos e +- - 43 + -- g4 ae ae rae rae 

a P a 
ae r ae = - cos (e - p- y) -x - xsin (e - p- y) + - cosy - 2, 

a 
az 

r-(+,~ose+4,sine)+ 
a a 
az az 

= -cos(e-p-y)r-x+pcosy-Xonthewalls8 = +a, (4.3) 

where we have deleted the superscript (2) in the functions $(:). These conditions 
are fulfilled if we choose 

2nc cosy sinh [(n - a) v] sinh pv 
A -  PKiA I El P), - v sinh nv sinh a v  

2nc cos y cosh [(n - a)  v] cosh pv 
B -- PKiA I k I P 1 Y - vsmhnv cash av 

with 

a! = v sin a[cos a cos (p + y )  sinh pv cosh nu + sin a sin (p  + y) Gosh pv sinh nu] 
-cos(P+y) eoshav sinh[(n-a)v]sinhpv, 
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by = v sin a[coa a cos (p + y )  coshpv cosh n u  +sin a sin (p + y )  sinh pv sinh nv] 

a! = - vcos a[cos a COB (p + y )  cosh pv sinh nv + sin a sin (p + y )  sinhpv cosh nv] 

b; = - v cos a[cos a cos (p + y )  sinhpv sinh nv + sin a sin (,d + y )  coshpv cosh nv] 

a: = -isina cosy coshav sinh[P(v+i)]sinhnv/sinh[a(v+i)], 

bf = - i sin a cosy sinh av cosh [p(v  + i)] sinh nvlcosh [a(v + i)], 
at = i cos a cosy cosh av cosh [p( v + i)] sinh nv/cosh [a( v + i)], 

- cos (p+ y )  sinh av cosh [(n - a) v] coshpv, 

-sin(p+y) coshavsinh[(n-a)v]sinhpv, 

- ain (p + y )  sinh av cosh [(n - a) v] cosh pv, 

b i  = i cos a cosy sinh av sinh [,d( v + i)] sinh nvlsinh [a( v + i)]. (4.6) 

The harmonic functions $n, which are obtained by applying the inverse transform to 
(4.5), together with Vcl) completely determine the velocity field in the domain under 
consideration. 

The force F and the torque T on the sphere correct to first-order in the wall effect 
are calculated by means of the generalized Faxen law, and are 

with 
N,S = v cos 2a sin 2p sinh 2pv - (cosh 2av - cosh 2pv) 

N$ = q A [ 3 ~ p A + ( ~ 2 + a ) ~ A ] ,  

NZ = p.'[3vpS + ( v2 + g) q'] ; 

& cos 2/3(~0sh 2av cash 2 p ~  - l ) ,  

N$ = v sinh 2pv( 1 - cos 2a cos 2p) * sin 2P(cosh 2av cosh 2pv - 1)  ; 

with 
N &  = v2[cosh 2pv( 1 - cos 2~ cos 2 p )  T (COS 2~ - cos 2/3)] 

* v sin 2p sinh 2Pv(cosh 201 T cos 2a) 

- (cosh 2gv - cosh 2pv) T cos 2p( cosh 2av Gosh 2pv - 1) ; 

(4.7) 

(4-8) 

(4.9) 

(4.10) 

(4.11) 
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FIUURE 7. Graph off, given by (4.9) for various a. The curves for a = +T and for a = 0 are the 
same aa those deduced from Lorentz (1907) and Ho & Leal (1974), respectively; the values 
1.004 and 0.6526 in parentheses have been given by Faxen (1922, 1921). Maximum value is 
attained at a = 50' on the bisector. 
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FIUURE 8. Graph of -fro (or - fsr) given by (4.10) for various a, where €fie 
is the side force experienced by the sphere. 
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FIGURE 9. Graph of foe given by (4.11) for various a. The curve for a = )n is deduced from 
Lorentz (1907), and the curve for a = 0 including the value 1.451 in parentheses corresponds to 
Ho t Leal (1974). 

W G  +- 
A+(v; a )  A-(v; a )  

t,, = 2 sin2 (a - p)  dv tanh 7rv lo- 
2N$ 

A+(V; a) ~ - ( v ;  a) + A-(V; 
f 

with 
N$ = v2 sin 2p( k 1 - cos 2a cosh 2pv) 

- v S i n h  ~ P v [  1 cos 2p  cash SCCV + &( 1 + cos 201 cos a/?)] 
k 8 sin 2/3(cosh 2av cosh 2pv - 1 ), 

N,4. = rA[vpA + (v2 + $) qA] - sA( 2v2pA + vqA j , 
N g  = rS[vpS + (u2 + Q )  $1 - sS( 2v2ps + vqS) ; 

with 
Nafg = ~ V ~ [ C O S ~  2pv( 1 - cos 2a cos 2 p )  T (COS 2~ - cos 2p)]  

(4.12) 

5 v sin 2p  sinh 2pv( 2 cosh 2av 5 cos 201) 
+ cosh 2av - cosh 2pv k cos 2p(cosh 2av cosh 2pv - 1 ) .  (4.13) 
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FIGURE 10. Graph oft,, given by (4.12) for various a. The value 0.025 in parentheses is deduced 
from FaxBn (1921) as well as Wakiya (1956) ; the curve for a = 0 corresponds to Ho & Leal 
(1974). Maximum value is attained at a = 37O at an intermediate position. 

I n  these expressions 

sA = sin a cosh av cos /3 cosh$v - COB a sinh av sin $ sinh $v, 
sS = sin a sinh av cos p sinh pv - cos a cosh av sin p cosh $v, 

and we again take minimum distance d = psin Ia-$I as a characteristic length in 
defining the parameter e = a/d. Numerical values off and t as functions of a and $ are 
shown in figures 7-1 1 , which again include the results for a single plane wall and two 
parallel plane walls as a special case.? The results show that, in general, a ephere 
experiences a force not only in the direction of motion but also in the direction per- 
pendicular to it. This side force originates in the asymmetric boundary condition with 

t In  the case /3 = 0, the asymptotic forms off and t as a goes to zero are 
fw = 1-004121+aZ[-('6~) In a-0.951767]+... ,  
t,e = 0*138044~-0~084947~a + . . . , 

fee = 1~451568-0~510735~*+ ..., 

and those for a near in are 
f, = :+0.6330(&~-a)+ ..., fee & + 0 . 7 0 3 1 ( ~ n - c ~ ) +  ..., t,, = 0.1406(4n-a)+ . . . a  
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FIGURE 11. Graph oft,@ given by (4.13) for various a. Maximum value is attained 
at a = 48n" on the bisector. 

respect to the translational motion of a sphere, and so it becomes zero in the following 
cases: (i) when a sphere lies on the bisector and moves either perpendicular to the 
bisector or perpendicular to the intersection of the wedge, (ii) when the wedge angle 
reduces to zero (i.e. two parallel plane walls) and a sphere moves parallel to or 
perpendicular to the walls at an arbitrary position, and (iii) when a sphere lies very 
close to one of the walls and moves parallel to or perpendicular to it. These are special 
cases of more general ones; other possibilities of vanishing side force are considered 
in the next section. The torque on the sphere is directed only in the z direction, 
and its magnitude becomes zero as the sphere approaches one of the walls. 
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FIGURE 12. One of the principal axes of translation y = $d for various a. The other one is in 
the direction y = @, + Jp, and the third one is perpendicular to both of them. 

5. Principal axes and a torque-free direction 
In the foregoing sections, we have obtained the force and torque acting on the sphere 

in the form 
F = - Srpa[l+ sK + O ( @ ) ] .  V, 

where 

are termed the wall-effect tensors. Note that in general the tensor K is symmetric, i.e. 
f,.e = f o r ,  but that the tensor C is not necessarily symmetric, which is the case in our 
results. 

5 .  I .  Principal axes of translation 

As an immediate consequence of the properties of symmetric tensors, there exist three 
mutually perpendicular axes along which the particle tmnslates without undergoing 
a side force (principal axes of translation). We shall now seek these principal axes and 
principal drags (i.e. the forces exerted on the sphere when it moves in these directions), 
which correspond to the eigenvectors and eigenvalues of the tensor K, respectively. 
The principal drags are 

where 

and A, =fw (5.5) 

6r ,m[ l+sh ,+0( s2 ) ]  IVI (n = 1 ,2 ,3 ) ,  (5.4) 

= 4(fw +fee) + [Kfm-fee)2 +f,2eIt, 
= f w  +fee - hi, 
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FIGURE 13. Torque-free direction $t defined by (5.7). 

The last is a translation parallel to the z axis, and the first two are motions in the 
directions 

where $d = 3tan-l PfTe/(frr-fee)l. 
Numerical values of $d as a function of a and p are shown in figure 12. It is to be noted 
that there exists a critical angle between in and in, where the principal axes change 
their directional tendencies. 

y = $d+=&n (n  = 0, I), (5.6) 

5.2 .  Torque-free direction 

There exists only one direction of motion along which the sphere does not experience 
a torque up to the present order of approximation. This line is in the direction y = $t 

on the z = 0 plane, where 
$t = - tan-l (tzr/tee).  (5.7) 

Numerical values of $t as a function of a and /3 are shown in figure 13. This direction 
does not in general coincide with any of the principal axes of translation. 

6. Another expression for the wall effect 
So far we have been discussing the wall effect on the force and torque experienced 

by a sphere, the values of which are of the form cf and c2t, respectively. In these 
expressions, we take the minimum distance d between the sphere and the walls as i:. 
characteristic length. Since the parameter c itself is a function of the particle position, 
it is not convenient to see how the total wall corrections depend on the location of the 
sphere, when its angular position varies from one wall to the other, keeping the 
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d 477 !in $77 &7 

Crr 0 1.4179 4.5769 16-358 
cr8 0 0.67020 2.4986 11.067 
c z s  0 0.32641 1-3085 6.4487 

TABLE 1. Values of C,, C,s and Czz. 

a in *n 6.. 
cz, 0.70895 2.2885 8-1792 33.363 
czS 0.33511 1.2493 5.5340 29.084 

- c,, 0.16321 0.65427 3.2243 18.715 
- cez 0.23414 1.0273 5.3661 32.130 

TABLE 2. Values of C,,, Czs, C,, and Ce.. 

distance from the intersection constant. Therefore we introduce another expression 
for the force and torque, e*f * and e*2t*, respectively, where f * and t* are given by? 

f * =f/sin Ia-pI, t* = t/sin2((a-P), (6.1) 

so that e* = a/p remains constant, where p is the distance between the sphere and the 
intersection of the walls. Careful calculation (Sano 1977) shows that f,*r generally takes 
a minimum value on the bisector, however it takes a minimum value at  a certain point 
between the wall and the bisector when the semi-vertex angle a lies in the range 
i7r < a < &r. Also one of the principal drags A$ has a minimum value at  an inter- 
mediate position for +7r 5 a s in. The function f$ takes the value 0 on the bisector, 
decreases like-p/a and asymptotes to-& as one of the walls is approached. Other 
functions f * and A* take minimum values on the bisector, and increase monotonically 
in proportion to ( 1 - p/a)-l as P/a tends to unity. 

The asymptotic behaviours of the f * as the sphere approaches one of the walls are 

where K = a - p, and the coefficients C are tabulated in table 1.  The values off * and A* 
calcuIated by the use of these formulae are accurate to 2 %  even for j3/a = 0.7. 
The functions It&\ and tS become maximum on the bisector, gradually decreasing to 
zero like (1 as one of the walls is approached; on the other hand It;/ and tz 
take the value 0 on the bisector, increase like p/a, become maximum at a certain 
intermediate position and finally decrease like (1 - p/a) in the vicinity of the wall. The 
asymptotic forms of the t* near the wall are 

where the values of C's are given in table 2. 

t Copies of the tables off* and t* are available to interested readers on request to the authors. 
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The apparent loss of symmetry in the functions f, h and t with respect to the 
argument 8, which leads to the presence of the cusps at  /?= 0 except for the case a = &r, 

arises from our definition of E ,  so that the symmetries (or antisymmetries) reappear 
in our new expressions for f *, A* and t* given in this section. 

7. Discussion 
We have been confining our attention to the first-order effect of the boundary wall. 

As far as the approximation to this order is concerned, the present analysis could be 
applied to  more general situations. According to Brenner (1962, 1964), the hydro- 
dynamic force F experienced by any non-spherical particle can be evaluated by com- 
bining the present results for K and the knowledge of the Stokes force F, on the same 
particle moving at  the velocity V in an unbounded domain: 

F = [I -So. Kc/d+o(c/d)]-'. PO, 
Fo = - ~T,ucS~. V, 

where c is a characteristic dimension of the particle and So is the so-called Stokes 
translation tensor for the corresponding particle. Furthermore if the fluid itself is not 
at  rest at infinity, the modification required is solely to replace the particle velocity V 
by the velocity difference V - Vg, where V$ is the background velocity at  P in the 
absence of that particle. However, no such direct extensions could be made for the 
torque exerted on a non-spherical particle in the presence of boundary walls, because 
they depend on the shape as well as the orientation of that body at the same order c2 as 
is treated in this paper. 

When the sphere is allowed to rotate, one of the boundary conditions ( 2 . 3 ~ )  should be 
replaced by 

( 7 4  

where R is the position vector with its origin at  P, and the angular velocity w is 
determined through the condition of zero torque. The equations of motion as well as 
the boundary conditions are linear, so we can deal separately with translation and 
rotation of the sphere. The direction of the force induced by a rotation which itself is 
a result of translation is either parallel to the z axis for the case considered in Fj 3 or 
confined in the z = 0 plane for the case considered in Fj 4. In addition the contribution of 
the rotation to the induced velocity is at  most of order e2 1 0 1  a.f If the sphere translates 
at a given velocity V, it will undergo a torque of order e2 IVI which will make the sphere 
rotate with angular velocity o of order €2 IVl/u, which in turn gives the correction of 
order e4 IVJ to the translational velocity. Thus our analysis, although developed for the 
induced force without rotation, remains unchanged even if the sphere is allowed to 
rotate freely. Moreover it also predicts the angular velocity of the sphere w by the 

(7 .3)  relation 

as far as the lowest-order approximation is concerned. 

v = V + w x R on the surface of the sphere, 

0 = - s2c. v / a ,  

t As a matter of fact the force F,,, induced by the rotation of a sphere with angular velocity w 

Fro,, = - 8npu26*D. W, 

is (Happel & Brenner 1973, p. 171) 

where D is the transpose of G given by (5.3). 
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FIGURE 14. Sedimentation of a sphere, where & and & represents the initial and final horizontal 
positions of the sphere, respectively. 

The present analysis thus extended may be used as a basis for some predictions. 
First let us consider the sedimentation of a particle in the cases illustrated in figure 14. 
In figures 14 (a )  and (b ) ,  we denote the initial and final position of the sphere by ti and 
Cf, respectively. (Gravity acts in the direction shown by the arrow labelled g.) Then 
owing to the side-force found in our calculation, we find 

and 
5i < 5f for case (a), 

ti < tf < 0 or 0 < & < ti for case ( b ) .  



Efect of two plane walls on motion of a small sphere 693 

I .o c 

0 0.5 1 .o 
B l a  

FIGURE 15. Graph of t r  = (t:;+t;:)*, for various a, where e*2t: is the torque acting on 
the sphere translating parallel to both walls without rotation. 

Using these findings, we now examine the statistical distribution of sedimenting 
particles on the bottom wall. When the interaction among particles is neglected as in 
a dilute suspension, we can replace the sedimentation of many particles by the 
ensemble of the sedimentation of one particle, in which the particle is released 
randomly at a certain distance from the bottom. Then we shall have a statistical 
distribution for the number of spheres n(tf )  starting from the same horizontal plane 
and reaching the bottom wall at = t j  similar to the one shown by the solid line, where 
we also show by the dashed line the distribution no(&) which would come out in the 
absence of the wall effect. The third example is the motion of the sphere falling under 
gravity in the presence of two vertical intersecting walls (figure 14(c)). As has been 
shown in $3,  the sphere will translate with slightly reduced velocity the amount of 
which is evaluated in terms off,,. It will also undergo rotation in the direction 
illustrated in figure 6 with the angular velocity shown in figure 15, except for a constant 
numerical factor. 

This work was partially supported by the Grant-in-Aid for Scientific Research from 
the Ministry of Education. 
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